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We provide a general, model-independent, derivation of the Meissner effect, on 
the basis of assumptions of off-diagonal long-range order (ODLRO) and gauge 
covariance of the second kind. This is an exact result that is independent of the 
microscopic mechanism responsible for the ordering, and so is applicable both 
to high- and low-T c superconductors. 
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1. I N T R O D U C T I O N  

This note is devoted to a treatment of an old problem in the theory of 
superconductivity, which, in our view, has not been satisfactorily resolved 
either for metallic or for high-temperature superconductors. The problem is 
that of the microscopic derivation of the Meissner effect, which is, of 
course, the key to the electromagnetic properties of superconductors. (1) 

In the theory of metallic superconductivity, there is the radical dif- 
ficulty that the Bardeen-Coope~Schrieffer  (BCS) ansatz (2) violates the 
principle of gauge covariance of the second kind. (3) Attempts (4) to over- 
come this difficulty, by taking account of interactions other than those of 
the Cooper pairing, have led to derivations of the Meissner effect that are 
only approximately gauge invariant. Since exact gauge covariance is 
required for local charge conservation and thus even for the very definition 
of electric current, this is an unsatisfactory state of affairs. As regards 
high-T~ superconductivity, developments toward a microscopic theory (5) 
have not yet led to a clear-cut derivation of the Meissner effect. 

The object of the present note is to provide a simple and exact deriva- 
tion of the Meissner effect from very general principles that do not require 
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the explicit form of the microstate of a superconductor. To this end, we 
invoke the assumption of off-diagonal long-range order (ODLRO),  which 
was proposed long ago as a characterization of superfluidity in both liquid 
helium (6) and in superconductors(7): this assumption is satisfied by the 
ans/itze of Feynman ~8~ for helium, of BCS for metallic superconductors, 
and of some proposed theories (15) of high-T c ones. 

The result we shall obtain, by an exact symmetry argument, is that the 
Meissner effect is a general consequence of ODLRO and gauge covariance 
of the second kind: specifically, we prove that this covariance renders 
ODLRO incompatible with the entry of a uniform magnetic field into the 
system. It is noteworthy that the gauge principle is an essential factor in 
our derivation of this result, whereas it appeared to be an obstacle to pre- 
vious theories. The key to our result is that, as we shall see in Section 2, 
space translations in the presence of a uniform magnetic field B are 
represented by transformations of the quantized field ~ of the form (9) 

-ie(B, a, x)) 
O(x) ~ O(x + a) exp 2hc (1.!) 

The exponential factor arises from the regauging of the magnetic vector 
potential corresponding to a spatial displacement a. It is this factor that 
renders ODLRO incompatible with the presence of the magnetic field. 

We organize our material as folows. In Section 2, we formulate the 
general model for the theory. In Section 3, we reformulate the ODLRO 
condition and state our main result in the form of a proposition and subse- 
quent discussion. In Section 4, we prove the proposition. 

For  expository reasons, we keep the mathematics very simple, using 
the standard second quantization formalism of condensed matter physics. 
We remark, however, that our argument can easily be put onto a rigorous 
basis within the framework of algebraic statistical mechanics. 

2. THE  G E N E R A L  M O D E L  

Our model Z" is an infinitely extended system of particles in a space J(, 
which may be either a Euclidean continuum or a lattice. Points in X will 
generally be denoted by x, sometimes by y, a, or b. It will be assumed that 
S consists of a system Z" o of charged particles of one species in X and 
possibly of another component $1. It will be assumed that the model 
enjoys the properties of gauge covariance of both the first and the second 
kind, and that its interactions are translationally invariant. These assump- 
tions are satisfied by both Fr6hlich's electron-phonon model (1~ and 
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Hubbard's strong repulsion model, m) on which theories of metallic and 
high-Tc superconductivity, respectively, are based. 

We shall describe the subsystem S 0 in terms of a quantized field 
t) = (q~T, ~ ) ,  which satisfies the canonical commutation or anticommuta- 
tion relations, the former alternative admitting the possibility that S 0 might 
be a Bose system and so covering models of high-T C superconductivity 
where the charge carriers are bosons, e.g., "holons. ''(5) The observables of 
S o are formed from the polynomials in ~ and ~* that are invariant under 
gauge transformations of the first kind, i.e., t)--, Oe i~, with ~ constant. 
Thus, they are generated algebraically from operators of the form 
~9*(xt)...tp*(x,)O(x,+t)...O(x2,). We shall denote by Q(t) the time- 
translate, in Heisenberg representation, of an arbitrary observable Q. A 
dynamical characterization of thermal equilibrium states of S at inverse 
temperature fl is then given by the Kubo-Martin-Schwinger condition, 
which is valid even for infinite systems, ~12) i.e., 

(QI(t)Q2) = (Q2Qt(t + ihfl) ) (2.1) 

for arbitrary observables Qt, Q~, where the angular brackets denote expec- 
tation value. In view of the assumed translational invariance of the interac- 
tions, it follows from this formula that S supports translationally invariant 
equilibrium states. 

We shall be concerned with the properties of the system in the 
presence of a classical magnetic field B = curl A, and we shall assume that 
its dynamics is covariant w.r.t, gauge transformations of the second kind, 

(ieqS(x)) (2.2) A(x) --+ A(x) + V~b(x), O(x) --+ O(x) exp \ hc ] 

where ~b is an arbitrary function of position and - e is the electronic charge. 
We shall also assume that the interparticle interactions of the model are 
invariant under space translations, i.e., that the dynamics is covariant w.r.t. 

A ( x ) ~ A ( x + a ) ,  ~(x)-+~(x+a)  (2.3) 

together with the transformation of St  observables corresponding to the 
spatial displacement a. Specializing now to the case where the magnetic 
induction B is uniform and so may be represented by the vector potential 
A ( x ) = � 8 9  and choosing ~b(x)= - (B,  x, a), we have the relation 
A(x )+VO(x )=A(x -a ) .  Hence, it follows from (2.2) and (2.3) that the 
dynamics of S is covariant w.r.t. 

0(x) --' 7(a) 0(x) = ~9(x + a) exp - ( -  ie(B, x, a)] - (2.4) 
\ 2hc / 
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together with the transformation for the N~ observables, corresponding to 
the space translation x ~ x + a. Thus, the transformations ~ correspond to 
space translations of the N0 observables. 

3. ODLRO A N D  THE MEISSNER EFFECT 

In order to formulate ODLRO, we introduce the pair field 

~r-/(Xl, X2) = 0 T ( X I )  ~/+(X2) (3.1) 

The property of ODLRO may then be expressed in terms of this field by 
the condition that (v) 

lim [ (  ~g*(xl + y, x2 + y) ~P(x'~, x'2) ) 
lyl ~ oe 

- -  I ~ * ( X l  -[- y ,  X 2 -[- y) ~(x'l, x ; ) ]  = O, Vx' 1 , x~, x~, x2 s X (3.2) 

where the function ~b is c-number-valued, and ~(X 1 + y, X 2 "~ y) does not 
tend to zero as [y[ ~ ~ .  We note here that gt is not an observable, though 
the quantity in ( . )  in (3.2) is one. 

The following proposition, which we shall prove in Section 4, and the 
subsequent comments constitute our derivation of the Meissner effect. 

Proposition. Assume that the system is in a translationally 
invariant state possessing the property of ODLRO. Then: 

(a) In the case where X is a continuum, the system cannot support 
a (nonzero) uniform magnetic field. 

(b) In the case where X is a lattice, whose cells are of volume v, the 
internal, uniform magnetic field B is restricted to values hcx/ev, with x a 
point of the lattice X. 

(c) In the latter case and under the further assumption that B is 
proportional to the applied magnetic field H, the system cannot support a 
(nonzero) magnetic field. 

Comments .  (1) This Proposition implies that, under the stated 
conditions, translationally invariant (including equilibrium) states with 
ODLRO do not admit uniform magnetic fields, and thus that they exhibit 
the Meissner effect: by contrast, states that are normally diamagnetic admit 
such fields. 

(2) In order to relate the Proposition to superconductivity, as 
characterized by the Meissner effect, ~ we now explicitly assume that Z 
undergoes a phase transition at some temperature T c such that, for T <  T, 
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only, the equilibrium state has the ODLRO property and that this 
property persists even in the presence of a sufficiently weak uniform 
magnetic field. Under this assumption, the Proposition tells us that the 
ODLRO phase is superconducting. 

(3) Since one knows empirically (3~ that type II superconductors take 
up spatially nonuniform structures when the strength of the applied 
magnetic field H is less than a critical value He1, the dependence of the 
proposition on the translational invariance of the state limits 2 its 
applicability to these materials to situations where H <  Hc,. 

(4) The result of part (b) of the Proposition, without the hypothesis 
of (c), tells us that the only alternative to the Meissner effect for a lattice 
system is the admission of a field B of magnitude ~hc/el 2, where l is the 
lattice spacing. For typical values of l, e.g., ,-~ 10 -s, this would mean that 
the internal field would be of the order of ~ 10 9 G ,  which is many orders 
of magnitude larger than any known critical fields. This lends empirical 
support for the result in (c) for lattice systems, obtained on the basis of the 
supplementary assumption there. 

4. PROOF OF PROPOSITION 

By Eqs. (2.4) and (3.1), 

7(a) gt(xl, x2) =- ~.(xl ,  x2) 

= ~(xl + a' x2 + a) exp ( -ie(B' xl + xz' (4.1) 

In analogy with this formula, we define g(a) to the transformation of 
complex-valued two-point functions by the equation 

g(a) ~(Xl, x2) ~ ~a(Xl, X2) 

=qS(x l+a ,  x2+a)exp( - ie (B 'x12he+xz 'a ! )  

and thence infer that 

(4.2) 

de(B, a, b)) g(-a-b)[g(a)g(b)-g(b) g(a)]q~=Ziq~sin\ -hc (4.3) 

2 1 am grateful to Oliver Penrose for drawing my attention to this point. 
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By (4.1) and (4.2), the ODLRO condition (3.2) is invariant under gt__, ~ u  
q) --, q~, and thus 

lim (( ~*(xx +y ,  x 2 + y )  ~o(X'~, X'2))--~b*(Xl +y, x Z + y )  ~b~(X'l, X;))=0  
lyl ~ ov 

(4.4) 

Further, by the translational invariance assumption for the state, 

< ~Pff(X 1 "J- y, X 2 j- y) ~-Ia(Xtl, Xt2) > ~ < ~/*(X 1 "~ y,  X 2 "J- y )  ~['r , Xi)  > 

and therefore (4.4) may be rewritten as 

lim [ (  g~*(Xl + y, x2 + Y) 7t(x'~, x" ) >-q~*(x~ + y, x2 + y) q~(x], x;)]  = 0 
lyl ~ ov 

On subtracting this formula from (3.2), we see that 

lim [~b*(x~ + y, x2 + y) 4~a(x~, x 2 ) -  ~b (xl + y, x2 + y) ~(x'l, x~)] = 0 

(4.5) 

Since this remains valid when we replace x], x~ by xl ,  x2, 

lim [~b*(x~ + y, x2 + y) eb~(x~, x2) - 45*(xx + y, x2 + y) ~(x~, x2)] = 0 
lyl ~ 

(4.6) 

On multiplying (4.5) by ~b(xl, x2) and (4.6) by ~(x'~, x~) and subtracting, 
we see that 

lim {q~*(xl +y ,  x2 +y)[q~,(xl ,  X2) ~(X'1,  X 2 ) - - ~ ( X l ,  X2) ~a(X'1, X2)]  } = 0  
]yl ~ oo 

Therefore, since, by our above definition of ODLRO, ~b(x~ + y, x2 + y) 
does not tend to zero as [y[ ~ ~ ,  

~a(Xl,X2)~(XIl, Xt2)~-~(Xl,X2)~a(Xtl,XI2) Vxl ,x2,  Xil,Xt2~X (4.7) 

A further simple consequence of the condition that ~(xl  + y, x2 + y) does 
not tend to zero as [y[ ~ oo is that 45 does not vanish everywhere. Thus, 
choosing (~1, if2) to be a point pair where this function is nonzero and 
defining 2(a) to be the ratio of q~a(~l, x2) to qs(ff 1, i'2), we see from (4.7) 
that 2(a) is independent of the choice of (if1,)72), i.e., that ~a = g(a)~b = 
2(a)~b. Hence, 

g(a) g(b)crp = g(b) g(a)q5 Va, b e Y 
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since the c-numbers 2(a), 2(b) intercommute;  and consequently, by (4.3), 

a, b)) = o q~ sin \ hc 

Consequently,  as the function q~ is not  identically zero, the sinusoidal term 
in this equat ion must  vanish, and therefore 

(B, a, b) = ~nhc/e (4.8) 

where n is an integer that depends on a and b. 
In the case where X is a cont inuum, this formula implies that B = 0, 

as may  be seen on replacing a by ka with k an irrational number.  This 
proves part  (a) of the proposition. 

In the case where X is a lattice, with basis vectors a~, a2, a3, it follows 
from (4.8) that 

( B, ai, aj) = ~n~jhc/e (4.9) 

where n~/is an integer. Expressing B as a linear combinat ion  of  a l ,  a2, a3, 
we see from (4.9) that  the coefficient of ai is 7rvihc/ev, where vi is an integer 
and v is the volume of a lattice cell, (a~, a2, a3). Hence, B is of the form 
hcx/ev, where x = Z i  v~ai is an arbitrary lattice point, as required for part  
(b) of  the Proposit ion.  Moreover ,  if B is propor t ional  to the applied field 
H, it follows immediately from this result that  B = 0. This completes the 
p roof  of the Proposit ion.  
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